Résume | Soit $F$ un corps $p$-adique et soit $D$ une $F$-algèbre à division de dimension finie. Nous prouvons que toute représentation irréductible unitaire d'un sous-groupe de Levi de $GL(m,D)$ s'induit irréductiblement à $GL(m,D)$. Ceci met fin à la classification du dual unitaire de $GL(m,D)$ élaborée par Tadić. L'idée de la preuve est d'utiliser la théorie des paires couvrantes de Bushnell-Kutzko pour se ramener au cas d'un groupe linéaire déployé, pour lequel le résultat est déjà connu. |