Séminaires : Séminaire Groupes Réductifs et Formes Automorphes

Equipe(s) : fa, tn,
Responsables :Alexis Bouthier, Benoît Stroh
Email des responsables : alexis.bouthier@imj-prg.fr, benoit.stroh@imj-prg.fr
Salle :
Adresse :
Description

Orateur(s) Ricardo MENARES - École Polytechnique Fédérale de Lausanne,
Titre Opérateurs de Hecke et théorie d'Arakelov sur les courbes modulaires
Date12/03/2009
Horaire14:00 à 15:00
RésumeÀ une courbe définie sur un corps de nombres, la théorie d'Arakelov attache un groupe abélien muni d'une forme bilinéaire, realisée comme un produit d'intersection. Cet invariant est appelé le ``groupe de Chow arithmétique'' de la courbe. Un invariant numérique qui en est deduit est l'auto-intersection du faisceau canonique. Nous étudions le groupe de Chow arithmétique dans le cas des courbes modulaires. En utilisant des ameliorations techniques de la théorie d'Arakelov dues à J.-B. Bost et U. Kühn, on montre que les opérateurs de Hecke agissent sur le groupe de Chow arithmétique et que l'action est autoadjointe par rapport à la forme bilinéaire. La décomposition du groupe de Chow arithmétique en composantes propres qui en est déduite permet de definir des nouveaux invariants arithmétiques, plus fins que l'auto-intersection du faisceau canonique.
Salle
Adresse
© IMJ-PRG