Séminaires : Séminaire Groupes Réductifs et Formes Automorphes

Equipe(s) : fa, tn,
Responsables :Alexis Bouthier, Benoît Stroh
Email des responsables : alexis.bouthier@imj-prg.fr, benoit.stroh@imj-prg.fr
Salle :
Adresse :

Orateur(s) Eugen HELLMANN - University of Texas,
Titre Density of potentially Barsotti-Tate representations
Horaire09:30 à 10:30
RésumeLet $K$ be a finite extension of $Q_p$. We prove that the Galois representations that become Barsotti-Tate after an abelian extension are Zariski-dense in the generic fiber of the universal deformation ring of an absolutely irreducible 2-dimensional residual Galois representation. The proof uses a map from an eigenvariety to the space of trianguline representations and a related density statement on the eigenvariety as a global input. This is joint work with Benjamin Schraen.