Séminaires : Séminaire Groupes, Représentations et Géométrie

Equipe(s) : gr,
Responsables :A. Brochier, O. Brunat, J.-Y. Charbonnel, O. Dudas, E. Letellier, D. Juteau, M. Varagnolo, E. Vasserot
Email des responsables : Adrien Brochier <adrien.brochier@imj-prg.fr>, Olivier Brunat <olivier.brunat@imj-prg.fr>, Jean-Yves Charbonnel <jean-yves.charbonnel@imj-prg.fr>, Olivier Dudas <olivier.dudas@imj-prg.fr>, Emmanuel Letellier <emmanuel.letellier@imj-prg.fr>, Daniel Juteau <daniel.juteau@imj-prg.fr>, Michela Varagnolo <varagnol@math.u-cergy.fr>, Eric Vasserot <eric.vasserot@imj-prg.fr>
Salle : salle 2015, 2em étage,
Adresse :Sophie Germain

Orateur(s) Chris BOWMAN - I.M.J,
Titre The co-Pieri rule for Kronecker coefficients
Horaire10:30 à 11:30
RésumeA central problem in algebraic combinatorics is to provide an algorithm for calculating the coefficients arising in the decomposition of a tensor product of two simple representations of the symmetric group. The coefficients in such a decomposition are known as the “Kronecker coefficients”; these coefficients include the Littlewood—Richardson coefficients as a special case. In this subcase, the solution to the problem takes the form of a tableaux counting algorithm known as the Littlewood—Richardson rule. The ultimate goal in this area is to generalise the Littlewood—Richardson rule to the general case. We shall discuss recent work with Maud De Visscher and John Enyang in which this problem is solved for Kronecker coefficients labelled by “co-Pieri triples” of partitions.
Sallesalle 2015, 2em étage,
AdresseSophie Germain