Séminaires : Séminaire Groupes, Représentations et Géométrie

Equipe(s) : gr,
Responsables :A. Brochier, O. Brunat, J.-Y. Charbonnel, O. Dudas, E. Letellier, D. Juteau, M. Varagnolo, E. Vasserot
Email des responsables : Adrien Brochier <adrien.brochier@imj-prg.fr>, Olivier Brunat <olivier.brunat@imj-prg.fr>, Jean-Yves Charbonnel <jean-yves.charbonnel@imj-prg.fr>, Olivier Dudas <olivier.dudas@imj-prg.fr>, Emmanuel Letellier <emmanuel.letellier@imj-prg.fr>, Daniel Juteau <daniel.juteau@imj-prg.fr>, Michela Varagnolo <varagnol@math.u-cergy.fr>, Eric Vasserot <eric.vasserot@imj-prg.fr>
Salle : salle 2015, 2em étage,
Adresse :Sophie Germain
Description

Orateur(s) Jonathan BRUNDAN - Oregon university-- Newton institute Cambridge,
Titre Derived equivalences for blocks of Lie superalgebras
Date07/10/2016
Horaire10:30 à 11:30
RésumeI will talk about the problem of classifying blocks of category $\mathcal{O}$ for the general linear Lie superalgebra, both up to Morita equivalence and up to gradable derived equivalence. The analogous problem for a semisimple Lie algebra is usually approached via Soergel’s theory of graded category $\mathcal{O}$. The main point of the talk will be to explain an appropriate substitute in the super case. This comes from the $W$-algebra associated to the principal nilpotent orbit in $\mathfrak{g}$. Categorical Kac-Moody actions in the sense of Rouquier also play a role.
Sallesalle 2015, 2em étage,
AdresseSophie Germain
© IMJ-PRG