Séminaires : Séminaire Groupes, Représentations et Géométrie

Equipe(s) : gr,
Responsables :A. Brochier, O. Brunat, J.-Y. Charbonnel, O. Dudas, E. Letellier, D. Juteau, M. Varagnolo, E. Vasserot
Email des responsables : Adrien Brochier <adrien.brochier@imj-prg.fr>, Olivier Brunat <olivier.brunat@imj-prg.fr>, Jean-Yves Charbonnel <jean-yves.charbonnel@imj-prg.fr>, Olivier Dudas <olivier.dudas@imj-prg.fr>, Emmanuel Letellier <emmanuel.letellier@imj-prg.fr>, Daniel Juteau <daniel.juteau@imj-prg.fr>, Michela Varagnolo <varagnol@math.u-cergy.fr>, Eric Vasserot <eric.vasserot@imj-prg.fr>
Salle : salle 2015, 2em étage,
Adresse :Sophie Germain
Description

Orateur(s) Vera VÉRTESI - IRMA Strasbourg,
Titre Combinatorial Tangle Floer homology
Date04/11/2016
Horaire10:30 à 11:30
RésumeKnot Floer homology is an invariant for knots and links defined by Ozsvath and Szabo and independently by Rasmussen. It has proven to be a powerful invariant e.g. in computing the genus of a knot, or determining whether a knot is fibered. In this talk I define a generalisation of knot Floer homology for tangles; Tangle Floer homology is an invariant of tangles in $D^3$, $S^2\times I$ or in $S^3$. Tangle Floer homology satisfies a gluing theorem and its version in $S^3$ gives back a stabilisation of knot Floer homology. In the first part of my talk I will give description of (a combinatorial version of) knot Floer homology, and a show its naive restriction to tangles. Then in the second part I give the correct definition of tangle Floer homology and finally I discuss how to see tangle Floer homology as a categorification of the Reshetikhin-Turaev invariant.
Sallesalle 2015, 2em étage,
AdresseSophie Germain
© IMJ-PRG