Séminaires : Séminaire Groupes, Représentations et Géométrie

Equipe(s) : gr,
Responsables :A. Brochier, O. Brunat, J.-Y. Charbonnel, O. Dudas, E. Letellier, D. Juteau, M. Varagnolo, E. Vasserot
Email des responsables : Adrien Brochier <adrien.brochier@imj-prg.fr>, Olivier Brunat <olivier.brunat@imj-prg.fr>, Jean-Yves Charbonnel <jean-yves.charbonnel@imj-prg.fr>, Olivier Dudas <olivier.dudas@imj-prg.fr>, Emmanuel Letellier <emmanuel.letellier@imj-prg.fr>, Daniel Juteau <daniel.juteau@imj-prg.fr>, Michela Varagnolo <varagnol@math.u-cergy.fr>, Eric Vasserot <eric.vasserot@imj-prg.fr>
Salle : salle 2015, 2em étage,
Adresse :Sophie Germain
Description

Orateur(s) Su CHANGJIAN - Columbia University,
Titre On the K-theoretic stable basis of the Springer resolution
Date06/10/2017
Horaire10:30 à 11:30
RésumeIt is well known that there are two geometric realizations of the affine Hecke algebra. In this talk, I will compare the two geometric realizations of the periodic modules for the affine Hecke algebra, which is due to Lusztig and Braverman--Kazhdan. One of them uses the equivariant $K$ theory of $T^*G/B$. The other one involves the unramified principle series of Langlands dual p-adic group. We will compare the basis in those two spaces. With this, we can have an equivariant $K$-theoretic analogue of the Macdonald's formula for the spherical functions and the Casselman--Shalika formula for the Whittaker functions. Joint work with Gufang Zhao and Changlong Zhong.
Sallesalle 2015, 2em étage,
AdresseSophie Germain
© IMJ-PRG