Séminaires : Séminaire Groupes, Représentations et Géométrie

Equipe(s) : gr,
Responsables :A. Brochier, O. Brunat, J.-Y. Charbonnel, O. Dudas, E. Letellier, D. Juteau, M. Varagnolo, E. Vasserot
Email des responsables : Adrien Brochier <adrien.brochier@imj-prg.fr>, Olivier Brunat <olivier.brunat@imj-prg.fr>, Jean-Yves Charbonnel <jean-yves.charbonnel@imj-prg.fr>, Olivier Dudas <olivier.dudas@imj-prg.fr>, Emmanuel Letellier <emmanuel.letellier@imj-prg.fr>, Daniel Juteau <daniel.juteau@imj-prg.fr>, Michela Varagnolo <varagnol@math.u-cergy.fr>, Eric Vasserot <eric.vasserot@imj-prg.fr>
Salle : salle 2015, 2em étage,
Adresse :Sophie Germain
Description

Orateur(s) Xiuping SU - Université d'Amiens,
Titre On a conjecture of Bump--Nakasuji--Naruse about the Casselman basis
Date11/05/2018
Horaire10:30 à 11:30
RésumeLet G be a split p-adic reductive group. In the Iwahori invariants of a unramified principal series representation of G, there are two bases. One of them is the Casselman basis, which played an important role in the Casselman--Shalika formula. In this talk, I will prove a conjecture of Bump, Nakasuji and Naruse about the transition matrix between these two bases. The idea is to transform the problem into the Langlands dual side, and use motivic Chern classes defined by Brasselet--Schurmann--Yokura and the K-theoretic stable envelope of Maulik--Okounkov. This is based on joint work with Aluffi, Mihalcea and Schurmann.
Sallesalle 2015, 2em étage,
AdresseSophie Germain
© IMJ-PRG