Séminaires : Séminaire Groupes, Représentations et Géométrie

Equipe(s) : gr,
Responsables :A. Brochier, O. Brunat, J.-Y. Charbonnel, O. Dudas, E. Letellier, D. Juteau, M. Varagnolo, E. Vasserot
Email des responsables : Adrien Brochier <adrien.brochier@imj-prg.fr>, Olivier Brunat <olivier.brunat@imj-prg.fr>, Jean-Yves Charbonnel <jean-yves.charbonnel@imj-prg.fr>, Olivier Dudas <olivier.dudas@imj-prg.fr>, Emmanuel Letellier <emmanuel.letellier@imj-prg.fr>, Daniel Juteau <daniel.juteau@imj-prg.fr>, Michela Varagnolo <varagnol@math.u-cergy.fr>, Eric Vasserot <eric.vasserot@imj-prg.fr>
Salle : salle 2015, 2em étage,
Adresse :Sophie Germain
Description

Orateur(s) François BERGERON - UQAM,
Titre $GL_k\times S_n$-Modules de polynômes harmoniques généralisés
Date09/11/2018
Horaire14:00 à 15:00
RésumeNous débuterons par un rappel, accessible à tous, sur les connexions entre l’étude des modules de polynômes harmoniques diagonaux et une réalisation comme algèbre d’opérateurs sur les fonctions symétriques de l’algèbre de Hall elliptique. Ensuite, nous montrerons comment cela suggère de rechercher des modules plus généraux dans le cas multidiagonal (à savoir des $(GL_k x S_n)$-Modules). Nous proposerons des constructions explicites de tels modules, en montrant (si le temps le permet) comment ils permettent d’unifier un vaste champ d’études des dernières années (touchant la géométrie algébrique, la combinatoire algébrique, la théorie de la représentation, la physique statistique, et aussi la théorie des noeuds). En particulier, cela suggère qu’il serait potentiellement intéressant de construire des extensions à la théorie de l'algèbre de Hall elliptique.
Sallesalle 2015, 2em étage,
AdresseSophie Germain
© IMJ-PRG