Séminaires : Séminaire Groupes, Représentations et Géométrie

Equipe(s) : gr,
Responsables :A. Brochier, O. Brunat, J.-Y. Charbonnel, O. Dudas, E. Letellier, D. Juteau, M. Varagnolo, E. Vasserot
Email des responsables : Adrien Brochier <adrien.brochier@imj-prg.fr>, Olivier Brunat <olivier.brunat@imj-prg.fr>, Jean-Yves Charbonnel <jean-yves.charbonnel@imj-prg.fr>, Olivier Dudas <olivier.dudas@imj-prg.fr>, Emmanuel Letellier <emmanuel.letellier@imj-prg.fr>, Daniel Juteau <daniel.juteau@imj-prg.fr>, Michela Varagnolo <varagnol@math.u-cergy.fr>, Eric Vasserot <eric.vasserot@imj-prg.fr>
Salle : salle 2015, 2em étage,
Adresse :Sophie Germain
Description

Orateur(s) J. SEKIGUCHI - ,
Titre On uniqueness problem of potential vector fields related with reflection groups
Date08/03/2019
Horaire14:00 à 15:00
RésumePotential vector fields (PVF) are solutions to a generalization of the WDVV equation and play an important role in the theory of flat structures. There is a $(\mathbb{C}^{\ast})^n$-action on the set of PVFs of $n$-variables with a same weight system. It is a question whether under this action, the set of polynomial potential vector fields is a unique orbit or not. On the other hand, there is an interesting relationship between polynomial PVFs and well-generated complex reflection groups. In this talk, I explain the definition of PVF and its application to complex reflection groups. In particular I discuss a problem of uniqueness of polynomial PVFs related with well-generated complex reflection groups.
Sallesalle 2015, 2em étage,
AdresseSophie Germain
© IMJ-PRG