Séminaires : Séminaire Groupes, Représentations et Géométrie

Equipe(s) : gr,
Responsables :A. Brochier, O. Brunat, J.-Y. Charbonnel, O. Dudas, E. Letellier, D. Juteau, M. Varagnolo, E. Vasserot
Email des responsables : Adrien Brochier <adrien.brochier@imj-prg.fr>, Olivier Brunat <olivier.brunat@imj-prg.fr>, Jean-Yves Charbonnel <jean-yves.charbonnel@imj-prg.fr>, Olivier Dudas <olivier.dudas@imj-prg.fr>, Emmanuel Letellier <emmanuel.letellier@imj-prg.fr>, Daniel Juteau <daniel.juteau@imj-prg.fr>, Michela Varagnolo <varagnol@math.u-cergy.fr>, Eric Vasserot <eric.vasserot@imj-prg.fr>
Salle : salle 2015, 2em étage,
Adresse :Sophie Germain

Orateur(s) Neil SAUNDERS - University of Greenwich,
Titre Weyl Group Representations and Combinatorics from Springer Theory
Horaire14:00 à 15:00
RésumeFor $G$ connected, reductive algebraic group defined over $\mathbb{C}$ the Springer Correspondence gives a bijection between the irreducible representations of the Weyl group $W$ of $G$ and certain pairs comprising a $G$-orbit on the nilpotent cone of the Lie algebra of $G$ and an irreducible local system attached to that $G$-orbit. These irreducible representations can be concretely realised as a W-action on the top degree homology of the fibres of the Springer resolution. These Springer fibres are geometrical very rich and provide interesting Weyl group combinatorics: for instance, the irreducible components of these Springer fibres form a basis for the corresponding irreducible representation of $W$. In this talk, I’ll give a general survey of the Springer Correspondence and then discuss recent joint projects with Daniele Rosso, Vinoth Nandakumar and Arik Wilbert on Kato’s Exotic Springer correspondence.
Sallesalle 2015, 2em étage,
AdresseSophie Germain