Séminaires : Séminaire de Topologie

Equipe(s) : tga,
Responsables :Catherine Gille et Najib Idrissi
Email des responsables :
Salle : 1016
Adresse :Sophie Germain
Description

Un plan d’accès est disponible ici.

Pour vous inscrire à la liste de diffusion du séminaire, veuillez vous rendre à cette adresse.

Cette année (2021-2022), le séminaire de topologie évolue.

Des séances ponctuelles seront organisées tout au long de l'année et nous vous en tiendrons informé(e)s sur cette liste de diffusion.

Par ailleurs, il vous sera proposé d'assister ensemble à des projections en direct du séminaire [K-OS] (Knot Online Seminar), coorganisé par Emmanuel Wagner. Ces séances auront lieu les jeudis à 14h en salle 1016 du bâtiment Sophie Germain (Université de Paris, Campus des Grands Moulins) et ce à partir du jeudi 2 décembre.

Pour plus d'informations sur le programme vous pouvez consulter https://lrobert.perso.math.cnrs.fr/kos.html.

Les séances seront également annoncées via la liste de diffusion du séminaire.


Orateur(s) Gwénaël Massuyeau - IRMA, Strasbourg,
Titre Une extension fonctorielle de la torsion de Reidemeister à la catégorie des cobordismes de dimension 2+1
Date17/03/2015
Horaire11:00 à 12:00
Diffusion
RésumeEn dimension 3, la torsion de Reidemeister est un invariant topologique qui s’applique traditionnellement aux variétés fermées ou à bord toroïdal. Comme observé par Milnor, cet invariant contient le polynôme d’Alexander des nœuds. Dans cet exposé, et après ces quelques rappels, nous considérerons la torsion de Reidemeister des 3-variétés compactes de bord arbitraire. Pour un corps commutatif F et un sous-groupe multiplicatif G de F, nous construirons ainsi un foncteur de la catégorie des cobordismes de dimension 2+1 équipés de G-représentations vers la catégorie des F-espaces vectoriels gradués. Nous présenterons quelques propriétés de ce foncteur, et expliquerons comment notre constructions se spécialise à des invariants bien connus. (Travail en collaboration avec Vincent Florens.)
Salle1016
AdresseSophie Germain
© IMJ-PRG