Résume | Les espaces stratifiés sont des espaces métriques singuliers qui ont été étudiés d’abord en topologie, et plus récemment d’un point de vue analytique; ils apparaissent naturellement aussi dans le contexte de la géométrie différentielle. Dans cet exposé on s’intéresse au problème de Yamabe sur un espace stratifié: donnée une métrique appropiée sur l’espace, on cherche une métrique conforme qui ait courbure scalaire constante. L’existence de cette dernière dépend, d’après un résultat de K. Akutagawa, G. Carron et R. Mazzeo, d’un invariant conforme, la constante de Yamabe locale. La valeur de la constante de Yamabe locale est en générale inconnue. Nous allons montrer comment il est possible de la calculer sous une hypothèse géométrique sur le lieu singulier de l’espace. Les techniques utilisées dépendent d’une condition de courbure positive ou négative. Dans le cas de courbure positive, nous montrons des résultats pour les espaces stratifiés qui recouvrent des théorèmes de géométrie riemannienne (théorème d’Obata-Lichnerowicz, Myers…). Pour le cas de courbure négative, nous étudions une inégalité isopérimétrique avec une méthode de lissage. |