Séminaires : Séminaire d'Analyse Fonctionnelle

Equipe(s) : af,
Responsables :E. Abakoumov - D. Cordero-Erausquin - G. Godefroy - O. Guédon - B. Maurey - G.Pisier
Email des responsables :
Salle : salle 13 - couloir 15-16 - 4ème étage
Adresse :Campus Pierre et Marie Curie
Description
Le Jeudi à 10h30 -  IMJ-PRG - 4 place Jussieu - 75005 PARIS

Orateur(s) Richard Lechner - Linz,
Titre Factorization through operators with large diagonal
Date03/12/2015
Horaire10:30 à 12:00
RésumeGiven a Banach space~$X$ with an unconditional basis, we consider the following question: does the identity on~$X$ factor through every bounded operator on~$X$ with large diagonal relative to the unconditional basis? We show that on Gowers' space with its unconditional basis there exists an operator for which the answer to the question is negative. By contrast, for any operator on the mixed-norm Hardy spaces $H^p(H^q)$, where $1 \leq p,q < \infty$, with the bi-parameter Haar system, this problem always has a positive solution. The one-parameter $H^p$ spaces were treated first by Andrew in $1979$.
Sallesalle 13 - couloir 15-16 - 4ème étage
AdresseCampus Pierre et Marie Curie
© IMJ-PRG