Résume | Both the Jones polynomial and the Alexander polynomial can be viewed as invariants arising from the representations of quantum (super)groups in type A. Skew Howe duality give these invariants particularly nice descriptions in terms of trivalent diagrams. This method is particularly powerful when defining knot homology theories categorifying these polynomials. I will discuss the relationship between representations of quantum groups and the trivalent diagrams appearing in calculations of knot invariants, and describe how this can be used to understand knot homology theories, and progress towards obtaining a 'quantum' categorification of the Alexander polynomial.
|