G. Franz, L. Hauswirth, P. Laurain, R. Petrides, R. Souam
Email des responsables :
Salle :
1013
Adresse :
Sophie Germain
Description
Hébergé par le projet Géométrie et Dynamique de l’IMJ-PRG
Orateur(s)
Alberto FARINA - Université de Picardie, Amiens,
Titre
A Bernstein-type result for the minimal surface equation
Date
21/03/2016
Horaire
14:00 à 16:00
Diffusion
Résume
We prove the following Bernstein-type theorem: if u is an entire solution to the minimal surface equation, such that N − 1 partial derivatives ∂u/∂xj are bounded on one side (not necessarily the same), then u is an affine function. Besides its novelty, our theorem also provides a new, simple and self-contained proof of celebrated results of Moser and of Bombieri & Giusti.