Séminaires : Séminaire d'Analyse et Géométrie

Equipe(s) :
Responsables :O. Biquard, A. Deruelle, I. Itenberg, X. Ma
Email des responsables : {olivier.biquard, alix.deruelle, ilia.itenberg, xiaonan.ma}@imj-prg.fr
Salle : 15–25.502
Adresse :Jussieu
Description

Orateur(s) Bertrand Deroin - ENS Paris,
Titre Représentations super-maximales des groupes de sphères épointées à valeurs dans PSL(2, ℝ)
Date12/04/2016
Horaire14:00 à 15:00
Diffusion
RésumeOn présentera une classe particulière de représentations des groupes des sphères épointées dans PSL(2, ℝ) que nous appelons super-maximale. On montrera que ces représentations sont totalement non hyperboliques, dans le sens que les courbes fermées simples sont envoyées sur des éléments non hyperboliques. On montrera également que les représentations super-maximales sont géométrisables par des orbifolds hyperboliques dans un sens très fort. Enfin, on montrera que les représentations super-maximales définissent des composantes compactes dans certaines variétés de caractères relatives, qui sont symplectomorphes à des espaces projectifs complexes, ce qui généralise un résultat de Benedetto-Goldman dans le cas des sphères moins quatre points. Il s’agit d’un travail en collaboration avec Nicolas Tholozan.
Salle15–25.502
AdresseJussieu
© IMJ-PRG