Séminaires : Séminaire de Géométrie

Equipe(s) : gd,
Responsables :L. Hauswirth, P. Laurain, R. Souam, E. Toubiana
Email des responsables :
Salle : https://bbb-front.math.univ-paris-diderot.fr/recherche/pau-6ha-of4-mea
Adresse :Sophie Germain
Description

Archive avant 2014

Hébergé par le projet Géométrie et Dynamique de l’IMJ-PRG

 

 


Orateur(s) Michele RIMOLDI - LAGA, Paris 13,
Titre Properness and boundedness properties of complete self-shrinkers of the mean curvature flow
Date11/04/2016
Horaire13:30 à 15:00
Diffusion
RésumeIn this talk we will focus on geometric properties of complete non-compact self-shrinkers for the mean curvature flow which are confined into some regions of the ambient Euclidean space. Notably, we will obtain natural restrictions that force bounded complete self-shrinkers to be compact and we will observe that, to a certain extent, complete self-shrinkers intersect transversally a hyperplane through the origin. These results were inspired by a conjecture by H.D. Cao concerning the extrinsic polynomial volume growth of complete self-shrinkers.
This is a joint work with Stefano Pigola.
Sallehttps://bbb-front.math.univ-paris-diderot.fr/recherche/pau-6ha-of4-mea
AdresseSophie Germain
© IMJ-PRG