Séminaires : Théorie des modèles et groupes

Equipe(s) : lm,
Responsables :T. Ibarlucia, F. Oger, F. Point
Email des responsables : francoise.point@imj-prg.fr
Salle : 1016
Adresse :Sophie Germain Salle 1016
Description

Pour recevoir le programme, écrivez à oger_at_math.univ-paris-diderot.fr
Le mardi à 10h30 en salle  1016 (Sophie Germain) - sauf les 04/11, 02/12 et 20/01-changement de salle.

https://semgrp.imj-prg.fr pour plus de renseignements.

Abonnement à la liste de diffusion


Orateur(s) Quentin Brouette - Mons,
Titre Types définissables dans les corps ordonnés différentiellement clos
Date03/05/2016
Horaire16:00 à 17:30
Diffusion
RésumeLa théorie des corps ordonnés différentiellement clos (désignée CODF) est la modèle complétion de la théorie des corps ordonnés munis d'une dérivée. Elle a été définie et axiomatisée par Singer. En particulier, un modèle de CODF est un corps réel clos.

Dans cet exposé, après avoir rappelé la caractérisation des types définissables dans les théories o-minimales (résultat obtenu par Marker et Steinhorn, ainsi que Pillay), on prouvera une caractérisation similaire des types définissables dans CODF:

tp(u/A) est définissable si et seulement si A est Dedekind complet dans la clôture réelle du corps différentiel engendré par A et u.

Ensuite, on montrera que les types définissables sont denses dans l'espace de Stone de CODF.
Salle1016
AdresseSophie Germain Salle 1016
© IMJ-PRG