Séminaires : Géométrie et Théorie des Modèles

Equipe(s) : lm,
Responsables :Zoé Chatzidakis, Raf Cluckers.
Email des responsables :
Salle :
Adresse :ENS
Description

http://www.logique.jussieu.fr/ zoe/GTM/

 

Pour recevoir le programme par e-mail, écrivez à : zchatzid_at_dma.ens.fr.Retour ligne automatique
Pour les personnes ne connaissant pas du tout de théorie des modèles, des notes introduisant les notions de base (formules, ensembles définissables, théorème de compacité, etc.) sont disponibles ici : http://www.logique.jussieu.fr/~zoe/papiers/MTluminy.dvi. Ces personnes peuvent aussi consulter les premiers chapitres du livre Model Theory and Algebraic Geometry, E. Bouscaren ed., Springer Verlag, Lecture Notes in Mathematics 1696, Berlin 1998.Retour ligne automatique
Les notes de quelques-uns des exposés sont disponibles.


Orateur(s) Jean-Benoit Bost - Orsay,
Titre Réseaux euclidiens de rang fini et infini, séries thêta et formalisme thermodynamique
Date08/04/2016
Horaire16:00 à 17:30
RésumeUn réseau euclidien est la donnée (E, | . |) d'un ℤ-module E isomorphe à ℤ^r, r in ℕ, et d'une norme euclidienne | . | sur le ℝ-espace vectoriel E_ℝ ≅ ℝ^r qui lui est associé.
En géométrie arithmétique, il s'avère naturel d'associer à un réseau euclidien un invariant dans ℝ_+ défini au moyen d'une série thêta par la formule:
h^0_θ(E, | . |) := log sum_v in E e^-π|v|^2.
Dans cet exposé, je discuterai diverses propriétés, classiques et moins classiques, de cet invariant h^0_θ. Notamment, j'expliquerai comment certaines de ses propriétés se rattachent à la théorie des grandes déviations et au formalisme thermodynamique.
Je présenterai aussi des généralisations de l'invariant h^0_θ attachées à des avatars de rang infini des réseaux euclidiens.
Salle
AdresseENS
© IMJ-PRG