Séminaires : Séminaire d'Analyse Fonctionnelle

Equipe(s) : af,
Responsables :E. Abakoumov - D. Cordero-Erausquin - G. Godefroy - O. Guédon - B. Maurey - G.Pisier
Email des responsables :
Salle : salle 13 - couloir 15-16 - 4ème étage
Adresse :Campus Pierre et Marie Curie
Description
Le Jeudi à 10h30 -  IMJ-PRG - 4 place Jussieu - 75005 PARIS

Orateur(s) Aldéric Joulin - Toulouse,
Titre Trou spectral et inégalités de type Brascamp-Lieb pour des opérateurs de diffusion
Date13/10/2016
Horaire10:30 à 11:30
RésumeDans cet exposé, nous nous intéressons à l'estimation quantitative du trou spectral pour des opérateurs de diffusion du type $L = \Delta - \nabla V \nabla$, où $V$ est un bon potentiel sur $\mathbbR ^d$. Une des raisons principales motivant les probabilistes pour considérer cette question est que le trou spectral, à travers l'inégalité de Poincaré, fournit la vitesse optimale de convergence $L^2$ vers l'équilibre de la dynamique markovienne sous-jacente. Après un bref rappel du cas classique gaussien, nous verrons comment la notion d'entrelacement permet d'obtenir, dans le cas de certaines mesures invariantes log-concaves (et au-delà), des inégalités de type Brascamp-Lieb entraînant de nouvelles bornes inférieures sur le trou spectral.
Il s'agit d'un travail en collaboration avec M. Arnaudon et M. Bonnefont (Bordeaux).
Sallesalle 13 - couloir 15-16 - 4ème étage
AdresseCampus Pierre et Marie Curie
© IMJ-PRG