Séminaires : Géométrie et Théorie des Modèles

Equipe(s) : lm,
Responsables :Zoé Chatzidakis, Raf Cluckers.
Email des responsables :
Salle :
Adresse :ENS
Description

http://www.logique.jussieu.fr/ zoe/GTM/

 

Pour recevoir le programme par e-mail, écrivez à : zchatzid_at_dma.ens.fr.Retour ligne automatique
Pour les personnes ne connaissant pas du tout de théorie des modèles, des notes introduisant les notions de base (formules, ensembles définissables, théorème de compacité, etc.) sont disponibles ici : http://www.logique.jussieu.fr/~zoe/papiers/MTluminy.dvi. Ces personnes peuvent aussi consulter les premiers chapitres du livre Model Theory and Algebraic Geometry, E. Bouscaren ed., Springer Verlag, Lecture Notes in Mathematics 1696, Berlin 1998.Retour ligne automatique
Les notes de quelques-uns des exposés sont disponibles.


Orateur(s) Silvain Rideau - UC Berkeley,
Titre Imaginaires dans les corps valués avec opérateurs
Date13/01/2017
Horaire16:00 à 17:30
RésumeAu début des années 2000, Haskell, Hrushovski and Macpherson ont décrit les ensembles interprétables dans un corps valué algébriquement clos à l'aide d'équivalents en plus grande dimension des boules. Plus précisément, ils ont prouvé l'élimination des imaginaires dans le language géométrique. Pendant la même période, l'intérêt des théoriciens des modèles pour les corps valués avec opérateurs s'est grandement développé. Les questions résolues pour ces structures tournent, pour la plupart, autour de l'élimination des quantificateurs et de la modération. Mais, au vu des résultats de Haskell, Hrushovski and Macpherson, il est tentant de vouloir aussi classifier les ensembles interprétables.
Dans cet exposé, je traiterai des deux exemples les mieux compris: la modèle complétion de Scanlon des corps valués munis d'une dérivation contractive et les corps valués séparablement clos de degré d'imperfection fini. En particulier, je montrerai comment l'élimination des imaginaires dans ces structures est liée à l'existence d'une base canonique pour les types définissables et comment la propriété d'indépendance (ou plutôt son absence) peut aider à contrôler ces bases canoniques.
Salle
AdresseENS
© IMJ-PRG