Résume | Si G est un groupe discret ou localement compact, l’ensemble Sub(G) de ses sous-groupes, muni de la topologie de Chabauty, est naturellement un espace compact sur lequel G agit par conjugaison. On s’intéresse à la dynamique topologique de cette action. Je vais présenter des résultats qui permettent de décrire les fermés minimaux invariants dans l’espace de Chabauty pour une classe de groupes a partir d’une action par homéomorphismes. Une telle description permet d’obtenir des résultats de rigidité pour les actions sur les compacts et des applications à l’étude des C-algèbres réduites de ces groupes. L’exposé est basé sur des travaux en commun avec A. Le Boudec et T. Tsankov. |