Résume | Il s'agit d'un travail en cours avec Bas Janssens (Université de Delft) sur la cohomologie des algèbres de Lie-Rinehart. Nous calculons la cohomologie d'algèbres de Lie d'algèbres de Lie qui sont proches d'algèbres de Lie de champs de vecteurs, donc il s'agit d'une question proche de la cohomologie de Gelfand-Fuchs. D'une part, nous montrons que les 1-cocycles sont toujours des opérateurs différentiels (donc on a une filtration par l'ordre). D'une autre part, nous introduisons l'algèbre de Lie-Rinehart des jets J^k(L) d'une algèbre de Lie-Rinehart L, et montrons que la cohomologie (en tout degré) de L donnée par des opérateurs différentiels d'ordre k est isomorphe à la cohomologie k-linéaire de J^k(L). Nous avons des classes d'exemples où cet isomorphisme permet un calcul de la 1-cohomologie. |