Séminaires : Séminaire de Topologie

Equipe(s) : tga,
Responsables :Catherine Gille et Najib Idrissi
Email des responsables :
Salle : 1016
Adresse :Sophie Germain
Description

Un plan d’accès est disponible ici.

Pour vous inscrire à la liste de diffusion du séminaire, veuillez vous rendre à cette adresse.

Cette année (2021-2022), le séminaire de topologie évolue.

Des séances ponctuelles seront organisées tout au long de l'année et nous vous en tiendrons informé(e)s sur cette liste de diffusion.

Par ailleurs, il vous sera proposé d'assister ensemble à des projections en direct du séminaire [K-OS] (Knot Online Seminar), coorganisé par Emmanuel Wagner. Ces séances auront lieu les jeudis à 14h en salle 1016 du bâtiment Sophie Germain (Université de Paris, Campus des Grands Moulins) et ce à partir du jeudi 2 décembre.

Pour plus d'informations sur le programme vous pouvez consulter https://lrobert.perso.math.cnrs.fr/kos.html.

Les séances seront également annoncées via la liste de diffusion du séminaire.


Orateur(s) Friedrich Wagemann - Nantes,
Titre Cohomologie des algèbres de Lie-Rinehart
Date28/11/2017
Horaire11:00 à 12:00
Diffusion
RésumeIl s'agit d'un travail en cours avec Bas Janssens (Université de Delft) sur la cohomologie des algèbres de Lie-Rinehart. Nous calculons la cohomologie d'algèbres de Lie d'algèbres de Lie qui sont proches d'algèbres de Lie de champs de vecteurs, donc il s'agit d'une question proche de la cohomologie de Gelfand-Fuchs. D'une part, nous montrons que les 1-cocycles sont toujours des opérateurs différentiels (donc on a une filtration par l'ordre). D'une autre part, nous introduisons l'algèbre de Lie-Rinehart des jets J^k(L) d'une algèbre de Lie-Rinehart L, et montrons que la cohomologie (en tout degré) de L donnée par des opérateurs différentiels d'ordre k est isomorphe à la cohomologie k-linéaire de J^k(L). Nous avons des classes d'exemples où cet isomorphisme permet un calcul de la 1-cohomologie.
Salle1016
AdresseSophie Germain
© IMJ-PRG