Séminaires : Séminaire d'Analyse et Géométrie

Equipe(s) : acg,
Responsables :O. Biquard, J. Cao, I. Itenberg, X. Ma
Email des responsables : vincent.michel@imj-prg.fr
Salle : Barre 15-25, 5ème étage, salle 02
Adresse :Campus Pierre et Marie Curie
Description

Orateur(s) Thibaut Delcroix - Grenoble,
Titre Géométrie Kählérienne des variétés horosymétriques
Date23/01/2018
Horaire14:00 à 15:00
RésumeLes variétés toriques jouent un rôle fondamental en géométrie Kählérienne comme en témoigne par exemple le travail de Donaldson sur l’existence de métriques Kählériennes à courbure scalaire constante sur les surfaces toriques. Dans cet exposé, je présenterai la généralisation de certains outils de la géométrie torique de Guillemin-Abreu-Donaldson sur une classe de variétés contenant à la fois les fibrations homogènes en variétés toriques, les compactifications de groupes et leurs dégénérescences équivariantes. En application, je donnerai une condition suffisante combinatoire de propreté de la fonctionnelle de Mabuchi sur ces variétés, et des conséquences sur l’existence de métriques canoniques.
SalleBarre 15-25, 5ème étage, salle 02
AdresseCampus Pierre et Marie Curie
© IMJ-PRG