Séminaires : Séminaire d'Analyse Fonctionnelle

Equipe(s) : af,
Responsables :E. Abakoumov - D. Cordero-Erausquin - G. Godefroy - O. Guédon - B. Maurey - G.Pisier
Email des responsables :
Salle : salle 13 - couloir 15-16 - 4ème étage
Adresse :Campus Pierre et Marie Curie
Description
Le Jeudi à 10h30 -  IMJ-PRG - 4 place Jussieu - 75005 PARIS

Orateur(s) Gilles Lebeau - Nice,
Titre Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles}
Date18/01/2018
Horaire10:30 à 18:45
Résume We consider the linear wave equation and the linear Schrödinger equation outside a compact, strictly convex obstacle in $\mathbbR^d$ with smooth boundary. In dimension $d=3$ we show that the linear wave flow and the linear Schröodinger flow satisfy the dispersive estimates as in $\mathbbR^3$. For $d\geq 4$, if the obstacle is a ball, we show that there exists points where the dispersive estimates fail for both wave and Schrödinger equations.
Joint work with Oana Ivanovici
Sallesalle 13 - couloir 15-16 - 4ème étage
AdresseCampus Pierre et Marie Curie
© IMJ-PRG