Séminaires : Séminaire d'Analyse Fonctionnelle

Equipe(s) : af,
Responsables :E. Abakoumov - D. Cordero-Erausquin - G. Godefroy - O. Guédon - B. Maurey - G.Pisier
Email des responsables :
Salle : salle 13 - couloir 15-16 - 4ème étage
Adresse :Campus Pierre et Marie Curie
Description
Le Jeudi à 10h30 -  IMJ-PRG - 4 place Jussieu - 75005 PARIS

Orateur(s) Benoit Collins - Kyoto Univ.,
Titre The strong asymptotic freeness for random permutations
Date01/02/2018
Horaire10:30 à 11:25
Résumen by n permutation matrices act naturally on the (n-1)-dimensional vector subspace of C^n of vectors whose components add up to zero. We prove that random independent permutations, viewed as operators on this vector subspace, are asymptotically strongly free with high probability. While this is a counterpart of a previous result by the presenter and Male in the case of a uniform distribution on unitary matrices, the techniques required for random permutations are very different, and rely on the development of a matrix version of the theory of non-backtracking operators. We also discuss the case of sums of tensor products of random permutations. This is joint work with Charles Bordenave
Sallesalle 13 - couloir 15-16 - 4ème étage
AdresseCampus Pierre et Marie Curie
© IMJ-PRG