Résume | Consider a compact Calabi-Yau manifold with a holomorphic fibration onto a lower-dimensional space, and consider a family of Ricci-flat Kahler metrics on the total space whose Kahler class is degenerating to the pullback of a class from the base. In earlier work I proved that the metric collapse, away from the singular fibers, to a limiting metric on the base, in the locally uniform topology (and smoothly if the fibers are tori). I will describe new estimates that prove a uniform Holder bound in general, and bounds for all derivatives when the smooth fibers are isomorphic to each other. |