Séminaires : Séminaire de Topologie

Equipe(s) : tga,
Responsables :Catherine Gille et Najib Idrissi
Email des responsables :
Salle : 1016
Adresse :Sophie Germain
Description

Un plan d’accès est disponible ici.

Pour vous inscrire à la liste de diffusion du séminaire, veuillez vous rendre à cette adresse.

Cette année (2021-2022), le séminaire de topologie évolue.

Des séances ponctuelles seront organisées tout au long de l'année et nous vous en tiendrons informé(e)s sur cette liste de diffusion.

Par ailleurs, il vous sera proposé d'assister ensemble à des projections en direct du séminaire [K-OS] (Knot Online Seminar), coorganisé par Emmanuel Wagner. Ces séances auront lieu les jeudis à 14h en salle 1016 du bâtiment Sophie Germain (Université de Paris, Campus des Grands Moulins) et ce à partir du jeudi 2 décembre.

Pour plus d'informations sur le programme vous pouvez consulter https://lrobert.perso.math.cnrs.fr/kos.html.

Les séances seront également annoncées via la liste de diffusion du séminaire.


Orateur(s) Delphine Moussard - Université de Bourgogne,
Titre Un théorème de Fox-Milnor pour les sphères nouées dans S⁴
Date11/12/2018
Horaire10:30 à 11:30
Diffusion
RésumeRésumé : Pour les nœuds dans la sphère de dimension 3, on sait que le polynôme d'Alexander d'un nœud ruban se factorise sous la forme f(t)f(1/t) pour un certain polynôme f(t). À l'opposé, pour les 2-nœuds, c'est-à-dire les plongements d'une sphère de dimension 2 dans la sphère de dimension 4, le polynôme d'Alexander d'un 2-nœud ruban n'est pas même symétrique en général. Via une notion alternative de 2-nœuds rubans, on donnera une condition topologique pour retrouver la factorisation du polynôme d'Alexander. Travail en collaboration avec Emmanuel Wagner.

Abstract : For knots in the 3-sphere, it is well-known that the Alexander polynomial of a ribbon knot factorizes as f(t)f(1/t) for some polynomial f(t). For 2-knots, i.e. embeddings of a 2-sphere in the 4-sphere, the Alexander polynomial of a ribbon 2-knot is not even symmetric in general. Via an alternative notion of ribbon 2-knots, we give a topological condition on a 2-knot for recovering the factorization of the Alexander polynomial. This is a joint work with Emmanuel Wagner.
Salle1016
AdresseSophie Germain
© IMJ-PRG