Séminaires : Géométrie et Théorie des Modèles

Equipe(s) : lm,
Responsables :Zoé Chatzidakis, Raf Cluckers, Georges Comte, Antoine Ducros, Tamara Servi
Email des responsables : zoe.chatzidakis@imj-prg.fr
Salle :
Adresse :
Description

http://gtm.imj-prg.fr/

 

Pour recevoir le programme par e-mail, écrivez à : zoe.chatzidakis@imj-prg.fr
Pour les personnes ne connaissant pas du tout de théorie des modèles, des notes introduisant les notions de base (formules, ensembles définissables, théorème de compacité, etc.) sont disponibles ici : https://webusers.imj-prg.fr/~zoe.chatzidakis/papiers/MTluminy.dvi/MTluminy.dvi. Ces personnes peuvent aussi consulter les premiers chapitres du livre Model Theory and Algebraic Geometry, E. Bouscaren ed., Springer Verlag, Lecture Notes in Mathematics 1696, Berlin 1998.Retour ligne automatique
Les notes de quelques-uns des exposés sont disponibles.


Orateur(s) Philipp Dittman - Leuven,
Titre First-order logic in finitely generated fields
Date16/11/2018
Horaire14:15 à 15:45
Diffusion
RésumeThe expressive power of first-order logic in the class of finitely generated fields, as structures in the language of rings, is relatively poorly understood. For instance, Pop asked in 2002 whether elementarily equivalent finitely generated fields are necessarily isomorphic, and this is still not known in the general case. On the other hand, the related situation of finitely generated rings is much better understood by recent work of Aschenbrenner-Khélif-Naziazeno-Scanlon.
Building on work of Pop and Poonen, and using geometric results due to Kerz-Saito and Gabber, I shall show that every infinite finitely generated field of characteristic not two admits a definable subring which is a finitely generated algebra over a global field. This implies that any such finitely generated field is biinterpretable with arithmetic, and gives a positive answer to the question above in characteristic not two.
Salle
Adresse
© IMJ-PRG