Séminaires : Séminaire de Géométrie

Equipe(s) : gd,
Responsables :L. Hauswirth, P. Laurain, R. Souam, E. Toubiana
Email des responsables :
Salle : https://bbb-front.math.univ-paris-diderot.fr/recherche/pau-6ha-of4-mea
Adresse :Sophie Germain
Description

Archive avant 2014

Hébergé par le projet Géométrie et Dynamique de l’IMJ-PRG

 

 


Orateur(s) François FILLASTRE - Cergy-Pontoise,
Titre Géométrie hyperbolique des formes des corps convexes (avec C. Debin)
Date03/12/2018
Horaire13:30 à 15:00
Diffusion
RésumeOn introduit une distance sur l'ensemble des corps convexes de l'espace Euclidien de dimension n, à translations et homothéties près. Cet ensemble se plonge isométriquement comme un convexe de l'espace hyperbolique de dimension infinie. La structure lorentzienne ambiante est donnée par une extension de l'aire intrinsèque des corps convexes. On en déduit que l'ensemble des formes des corps convexes (c'est-à-dire les corps convexes à similitudes près) est muni d'une distance propre de courbure plus grande que -1. Pour les convexes en dimension 3, cet espace est homéomorphe à l'espace des métriques sur la sphère de courbure positive.
Sallehttps://bbb-front.math.univ-paris-diderot.fr/recherche/pau-6ha-of4-mea
AdresseSophie Germain
© IMJ-PRG