Séminaires : Séminaire d'Analyse Fonctionnelle

Equipe(s) : af,
Responsables :E. Abakoumov - D. Cordero-Erausquin - G. Godefroy - O. Guédon - B. Maurey - G.Pisier
Email des responsables :
Salle : salle 13 - couloir 15-16 - 4ème étage
Adresse :Campus Pierre et Marie Curie
Description
Le Jeudi à 10h30 -  IMJ-PRG - 4 place Jussieu - 75005 PARIS

Orateur(s) Hervé Queffelec - Lille,
Titre Opérateurs de composition à symbole surjectif et une application
Date06/12/2018
Horaire10:30 à 17:55
Résume En 1986, Mac Cluer et Shapiro ont construit un op\'erateur de composition compact sur l'espace de Hardy $H^2$ du disque, \`a symbole surjectif, et "presque" injectif.
En 2012, avec P.~Lef\`evre, D.~Li, et L.~Rodr\'iguez-Piazza, nous avons pr\'ecis\'e ce r\'esultat: le symbole peut \^etre surjectif et "presque" injectif, et la mesure de Carleson associ\'ee arbitrairement \'evanescente. En particulier, l'op\'erateur peut \^etre dans toutes les classes de Schatten. Notre preuve comportait des arguments compliqu\'es de mesure harmonique.
Dans le travail pr\'esent\'e ici, avec D.~Li, et L.~Rodr\'iguez-Piazza, nous donnons une preuve plus simple (l'in\'egalit\'e faible de Kolmogorov remplace la mesure harmonique) du r\'esultat de 2012, avec la pr\'ecision suivante: les nombres singuliers de l'op\'erateur de composition associ\'e ont un comportement sous-exponentiel arbitraire.
Nous en d\'eduisons \'egalement que la pluricapacit\'e de Monge-Amp\`ere de l'image du symbole ne suffit plus \`a d\'eterminer le comportement des nombres singuliers d\`es qu'on est en dimension $\geq 2$, alors qu'en dimension un nous avions montr\'e que la
capacit\'e de Green suffit \`a d\'eterminer ce comportement (formule de type Hadamard).
Sallesalle 13 - couloir 15-16 - 4ème étage
AdresseCampus Pierre et Marie Curie
© IMJ-PRG