Résume | L'homologie persistante est une technique pour étudier les propriétés topologiques d'espaces filtrés ou munis d'une fonction de Morse en encodant la durée de "vie" de classes d'homologie dans des espaces métriques combinatoires simples appelés code barres. Après les travaux de Curry, Kashiwara-Schapira notamment, on sait réinterpréter l'homologie persistante en termes de faisceau et de définir une distance dans la catégorie dérivée de ces derniers. Dans cet exposé, basé sur un travail en commun avec N. Berkouk, on présentera une notion de code barres dérivés-mais toujours de nature combinatoire-encodant cette dernière distance et raffinant la distance bottleneck usuelle. |