Séminaires : Séminaire de Topologie

Equipe(s) : tga,
Responsables :Catherine Gille et Najib Idrissi
Email des responsables :
Salle : 1016
Adresse :Sophie Germain
Description

Un plan d’accès est disponible ici.

Pour vous inscrire à la liste de diffusion du séminaire, veuillez vous rendre à cette adresse.

Cette année (2021-2022), le séminaire de topologie évolue.

Des séances ponctuelles seront organisées tout au long de l'année et nous vous en tiendrons informé(e)s sur cette liste de diffusion.

Par ailleurs, il vous sera proposé d'assister ensemble à des projections en direct du séminaire [K-OS] (Knot Online Seminar), coorganisé par Emmanuel Wagner. Ces séances auront lieu les jeudis à 14h en salle 1016 du bâtiment Sophie Germain (Université de Paris, Campus des Grands Moulins) et ce à partir du jeudi 2 décembre.

Pour plus d'informations sur le programme vous pouvez consulter https://lrobert.perso.math.cnrs.fr/kos.html.

Les séances seront également annoncées via la liste de diffusion du séminaire.


Orateur(s) Grégory Ginot - ,
Titre Distance d'entrelacement dérivée en homologie persistante
Date26/03/2019
Horaire10:30 à 11:30
Diffusion
RésumeL'homologie persistante est une technique pour étudier les propriétés topologiques d'espaces filtrés ou munis d'une fonction de Morse en encodant la durée de "vie" de classes d'homologie dans des espaces métriques combinatoires simples appelés code barres. Après les travaux de Curry, Kashiwara-Schapira notamment, on sait réinterpréter l'homologie persistante en termes de faisceau et de définir une distance dans la catégorie dérivée de ces derniers. Dans cet exposé, basé sur un travail en commun avec N. Berkouk, on présentera une notion de code barres dérivés-mais toujours de nature combinatoire-encodant cette dernière distance et raffinant la distance bottleneck usuelle.
Salle1016
AdresseSophie Germain
© IMJ-PRG