Séminaires : Séminaire Géométrie et Topologie

Equipe(s) : aa, acg,
Responsables :V. Humilière, J. Marché, A. Sambarino et M. Zavidovique
Email des responsables :
Salle : 15-25 502
Adresse :Campus Pierre et Marie Curie
Description

Ce séminaire s’adresse aux géomètres, topologues et dynamiciens au sens large. Il est rattaché aux équipes Analyse Algébrique et Analyse Complexe et Géométrie.

Les exposés seront accessibles à une audience large, doctorants inclus.

Il se tiendra à Jussieu, le jeudi à 11h, en salle 15-25 502.

Le séminaire l'agenda google suivante: https://calendar.google.com/calendar/embed?src=t8352hs3ft8e2ngob31rpijlts%40group.calendar.google.com&ctz=Europe%2FParis

 

http://www.sciencesmaths-paris.fr/fr/seminaire-geometrie-et-topologie-565.htm


Orateur(s) Daniel Alvarez-Gavela - IAS,
Titre The flexibility of caustics
Date17/01/2019
Horaire11:00 à 14:00
RésumeStarting with the work on immersion theory of Hirsch and Smale, many flavors of the problem of simplifying the singularities of smooth mappings have been studied in the mathematics literature. The over arching philosophy is that such a problem, a priori geometric in nature, nevertheless often reduces to the underlying homotopy theoretic problem (to which the tools of algebraic topology can then be applied). When this reduction is possible one says (following Gromov) that the problem abides by the h-principle. The flexibility of a problem refers to the extent to which an h-principle holds. In my PhD thesis it was established that an h-principle also holds for the problem of simplifying the singularities of Lagrangian and Legendrian fronts (also known as caustics). This result builds on previous work by Entov who adapted Eliashberg's technique of surgery of singularities to the setting of caustics. Furthermore, in recent joint work with Eliashberg, Nadler and Starkston we prove a certain h-principle “without homotopical conditions” for the simplification of caustics. In this talk we will review the flexibility of singularities of smooth mappings and present our current understanding on the flexibility of caustics. Time permitting, we will discuss applications of the latter to symplectic and contact topology.
Salle15-25 502
AdresseCampus Pierre et Marie Curie
© IMJ-PRG