Résume | Nous introduisons la notion de catégorie de Dold-Kan dont l'exemple-type est la catégorie des simplexes. La correspondance classique entre groupes abéliens simpliciaux et complexes de chaînes s'étend en une correspondance entre préfaisceaux abéliens sur une catégorie de Dold-Kan et complexes de chaînes généralisés.
Notre approche permet de redémontrer de manière uniforme plusieurs correspondances de type similaire (dues à Pirashvili, Church-Ellenberg-Farb, Gutierrez-Lukacs-Weiss et autres). L'outil de base est une étude d'éléments idempotents x,y vérifiant les relations de Schützenberger xyx=xy=yxy.
Un exemple intéressant et nouveau est constitué par les préfaisceaux abéliens sur la catégorie cellulaire Theta de Joyal. Notre correspondance induit ici un calcul de cochaînes prometteur pour les espaces d'Eilenberg-MacLane.
(Travail en commun avec Christophe Cazanave et Ingo Waschkies). |