Séminaires : Séminaire de Systèmes Dynamiques

Equipe(s) : gd,
Responsables :H. Eliasson, B. Fayad, R. Krikorian, P. Le Calvez
Email des responsables :
Salle : salle 15-25-502
Adresse :Campus Pierre et Marie Curie
Description

Archive avant 2015

Hébergé par le projet Géométrie et Dynamique de l’IMJ


Orateur(s) Maxime Wolff - IMJ-PRG,
Titre Rigidité et géométricité pour les actions de groupes de surfaces sur le cercle
Date29/03/2019
Horaire14:00 à 16:00
RésumeLe groupe fondamental $\Gamma_g$ d'une surface compacte orientée agit
naturellement sur le cercle : par exemple, en munissant la surface d'une
métrique hyperbolique on obtient une action de $\Gamma_g$ sur le plan
hyperbolique et une action sur le cercle à l'infini. Un théorème de Matsumoto
affirme que cette action est rigide : toutes ses déformations lui sont
semi-conjuguées ; elles ont la même dynamique rotationnelle. Plus récemment,
Kathryn Mann a montré que toutes les actions de $\Gamma_g$ sur le cercle
obtenues par revêtement de cette action géométrique, sont encore rigides.
Dans un travail en commun, que j'exposerai, nous montrons avec elle qu'il
n'y a pas d'autres actions rigides de $\Gamma_g$ sur le cercle.
Sallesalle 15-25-502
AdresseCampus Pierre et Marie Curie
© IMJ-PRG