Séminaires : Séminaire Géométrie et Topologie

Equipe(s) : aa, acg,
Responsables :V. Humilière, J. Marché, A. Sambarino et M. Zavidovique
Email des responsables :
Salle : 15-25 502
Adresse :Campus Pierre et Marie Curie
Description

Ce séminaire s’adresse aux géomètres, topologues et dynamiciens au sens large. Il est rattaché aux équipes Analyse Algébrique et Analyse Complexe et Géométrie.

Les exposés seront accessibles à une audience large, doctorants inclus.

Il se tiendra à Jussieu, le jeudi à 11h, en salle 15-25 502.

Le séminaire l'agenda google suivante: https://calendar.google.com/calendar/embed?src=t8352hs3ft8e2ngob31rpijlts%40group.calendar.google.com&ctz=Europe%2FParis

 

http://www.sciencesmaths-paris.fr/fr/seminaire-geometrie-et-topologie-565.htm


Orateur(s) Olga Paris-Romaskevich - Rennes,
Titre Automorphismes "simples" des variétés complexes et leur entropie polynomiale
Date14/03/2019
Horaire11:00 à 12:00
RésumeNous nous intéressons aux éléments du groupe des difféomorphismes holomorphes des variétés kähleriennes complexes qui ont une "basse complexité". Ils peuvent être étudiés sous différentes angles : étude des automorphismes sans orbite périodique, équicontinuité, comportement des dérivées des itérations, automorphismes d'entropie topologique nulle...

Pour ces derniers, la notion plus fine d'entropie polynomiale peut être définie pour mesurer la complexité. Cette notion était déjà étudiée dans quelques contextes dynamiques : systèmes hamiltoniens intégrables, homéomorphismes de Brouwer, flots géodésiques, homéomorphismes du cercle, etc. Dans cet exposé, je formulerai des résultats et des conjectures concernant des applications "simples" et leur entropie polynomiale dans le cadre holomorphe. Ceci est un travail en cours avec Serge Cantat.
Salle15-25 502
AdresseCampus Pierre et Marie Curie
© IMJ-PRG