Séminaires : Séminaire de Systèmes Dynamiques

Equipe(s) : gd,
Responsables :H. Eliasson, B. Fayad, R. Krikorian, P. Le Calvez
Email des responsables :
Salle : salle 15-25-502
Adresse :Campus Pierre et Marie Curie
Description

Archive avant 2015

Hébergé par le projet Géométrie et Dynamique de l’IMJ


Orateur(s) Pierre Berger - Paris 13,
Titre Émergence de domaines errants
Date19/04/2019
Horaire14:00 à 16:00
RésumeAvec Sebastien Biebler, nous montrons l'existence d'un ensemble localement dense d'automorphismes polynômiaux de $\R^2$ ayant une composante de Fatou complexe errante; en particulier, nous résolvons le problème de leur existence, publié par Bedford et Smilie en 1991. Ces composantes de Fatou errantes ont une trace réelle non vide et un comportement statistique historique de grande émergence. Notre preuve s'apuie sur un modèle géométrique. Il permet de montrer l'existence d'un ensemble ouvert dense de familles de difféomorphismes de classes $C^r$ dans le domaine de Newhouse, telles qu'à un ensemble dense de paramètres, il existe un domaine errant ayant un comportement statistique historique et de grande émergence, pour $2\le r\l'infty$ et $r=\omega$. Cela étend la solution du problème de Takens (2008) par Kiriki-Soma (2017) aux classes $C^\infty$ et $C^\omega$.
Sallesalle 15-25-502
AdresseCampus Pierre et Marie Curie
© IMJ-PRG