Séminaires : Séminaire de Systèmes Dynamiques

Equipe(s) : gd,
Responsables :H. Eliasson, B. Fayad, R. Krikorian, P. Le Calvez
Email des responsables :
Salle : salle 15-25-502
Adresse :Campus Pierre et Marie Curie
Description

Archive avant 2015

Hébergé par le projet Géométrie et Dynamique de l’IMJ


Orateur(s) Victor Kleptsyn - CNRS Rennes,
Titre Théorème de Furstenberg : maintenant avec un paramètre !
Date04/10/2019
Horaire14:00 à 16:00
Résume

Le théorème de Furstenberg classique décrit le comportement (presque sûr) d’un produit de matrices aléatoires indépendantes : leur normes ont une croissance exponentielle. Dans un travail avec A. Gorodetski, nous étudions ce qui se passe si ces matrices dépendent d’un paramètre supplémentaire. Dans cette nouvelle situation, la conclusion est différente. C’est-à-dire, sous certaines hypothèses, presque sûrement l’énoncé suivant est vrai: Même si pour presque tous les paramètres les produits ont une croissance exponentielle, il existe un ensemble (aléatoire) résiduel de paramètres « exceptionnels », pour lesquels la limite inférieure de l’exposant de Lyapunov est nulle. Nos résultats sont reliés à la localisation d’Anderson en dimension un, et fournissent un point de vue purement dynamique sur sa preuve. Je discuterai aussi certaines généralisations et questions ouvertes.

Sallesalle 15-25-502
AdresseCampus Pierre et Marie Curie
© IMJ-PRG