Séminaires : Séminaire de Systèmes Dynamiques

Equipe(s) : gd,
Responsables :H. Eliasson, B. Fayad, R. Krikorian, P. Le Calvez
Email des responsables :
Salle : salle 15-25-502
Adresse :Campus Pierre et Marie Curie
Description

Archive avant 2015

Hébergé par le projet Géométrie et Dynamique de l’IMJ


Orateur(s) Viviane Baladi - LPSM,
Titre Il n'y a pas de deviations aux moyennes ergodiques des flots horocycliques de Giulietti-Liverani sur le tore de dimension deux
Date15/11/2019
Horaire14:00 à 16:00
Résume

 

Giulietti et Liverani ont introduit une classe de flots uniquement
ergodiques associés aux difféomorphismes d'Anosov $F$
du tore $\T^2$, et étudié leurs moyennes ergodiques
à l'aide d'un opérateur de transfert pondéré pour $F$.
En utilisant la fonction zêta d'Artin-Mazur et des
espaces anisotropes appropriés, nous montrons
que cet opérateur de transfert n'a pas de valeurs propres
non triviales et par conséquent il n'y a pas de déviations aux moyennes
ergodiques. Notre preuve donne aussi un contrôle de la vitesse
de mélange de la mesure d'entropie maximale des difféomorphismes
d'Anosov du tore $\T^2$.

Sallesalle 15-25-502
AdresseCampus Pierre et Marie Curie
© IMJ-PRG