Séminaires : Géométrie et Théorie des Modèles

Equipe(s) : lm,
Responsables :Zoé Chatzidakis, Raf Cluckers.
Email des responsables :
Salle :
Adresse :ENS
Description

http://www.logique.jussieu.fr/ zoe/GTM/

 

Pour recevoir le programme par e-mail, écrivez à : zchatzid_at_dma.ens.fr.Retour ligne automatique
Pour les personnes ne connaissant pas du tout de théorie des modèles, des notes introduisant les notions de base (formules, ensembles définissables, théorème de compacité, etc.) sont disponibles ici : http://www.logique.jussieu.fr/~zoe/papiers/MTluminy.dvi. Ces personnes peuvent aussi consulter les premiers chapitres du livre Model Theory and Algebraic Geometry, E. Bouscaren ed., Springer Verlag, Lecture Notes in Mathematics 1696, Berlin 1998.Retour ligne automatique
Les notes de quelques-uns des exposés sont disponibles.


Orateur(s) Victoria Cantoral Farfan - Leuven,
Titre The Mumford-Tate conjecture implies the algebraic Sato-Tate conjecture
Date08/11/2019
Horaire14:15 à 15:45
Résume

The famous Mumford-Tate conjecture asserts that, for every prime number l, Hodge cycles are ℚ_l linear combinations of Tate cycles, through Artin's comparisons theorems between Betti and étale cohomology. The algebraic Sato-Tate conjecture, introduced by Serre and developed by Banaszak and Kedlaya, is a powerful tool in order to prove new instances of the generalized Sato-Tate conjecture. This previous conjecture is related with the equidistribution of Frobenius traces.
Our main goal is to prove that the Mumford-Tate conjecture for an abelian variety A implies the algebraic Sato-Tate conjecture for A. The relevance of this result lies mainly in the fact that the list of known cases of the Mumford-Tate conjecture was up to now a lot longer than the list of known cases of the algebraic Sato-Tate conjecture. This is a joint work with Johan Commelin.

Salle
AdresseENS
© IMJ-PRG