Séminaires : Séminaire de Géométrie

Equipe(s) : gd,
Responsables :L. Hauswirth, P. Laurain, R. Souam, E. Toubiana
Email des responsables :
Salle : https://bbb-front.math.univ-paris-diderot.fr/recherche/pau-6ha-of4-mea
Adresse :Sophie Germain
Description

Archive avant 2014

Hébergé par le projet Géométrie et Dynamique de l’IMJ-PRG

 

 


Orateur(s) Thomas Körbern - Freiburg,
Titre The Riemannian Penrose inequality for asymptotically flat manifolds with a non-compact boundary
Date13/01/2020
Horaire13:30 à 15:00
Diffusion
Résume

The Riemannian Penrose inequality is a fundamental result in mathematical general relativity and provides an estimate for the area of an outermost minimal surface in an asymptotically flat three-manifold solely in terms of the global mass. It was originally proven by Huisken and Illmanen using a weak version of the inverse mean curvature flow which has the crucial property of evolving the so-called Hawking mass in a non-decreasing way. In this talk, I will present a recent result which shows that a suitable version of the Penrose inequality continues to hold if the ambient manifold has a non-compact boundary. The main ingredient in the proof is a free boundary version of the weak inverse mean curvature flow which is obtained as the limit of a new approximation scheme accommodating for the presence of the non-compact boundary.

 

Sallehttps://bbb-front.math.univ-paris-diderot.fr/recherche/pau-6ha-of4-mea
AdresseSophie Germain
© IMJ-PRG