Séminaires : Séminaire Géométrie et Topologie

Equipe(s) : aa, acg,
Responsables :B. Petri, A. Sambarino, S. Seyfaddini et M. Zavidovique
Email des responsables :
Salle : 15-25-502
Adresse :Campus Pierre et Marie Curie

Ce séminaire s’adresse aux géomètres, topologues et dynamiciens au sens large. Il est rattaché aux équipes Analyse Algébrique et Analyse Complexe et Géométrie. Les exposés seront accessibles à une audience large, doctorants inclus. Il se tiendra à Jussieu, le jeudi à 11h, en salle 15-25 502. Le séminaire a l'agenda google suivante: https://calendar.google.com/calendar/b/0?cid=dDgzNTJoczNmdDhlMm5nb2IzMXJwaWpsdHNAZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbQ

Orateur(s) Marco Mazzucchelli - ,
Titre Spectral characterizations of Besse and Zoll Reeb flows
Horaire11:00 à 12:00

A closed Riemannian manifold is called Zoll when its unit-speed geodesics are all periodic with the same minimal period. This class of manifolds has been thoroughly studied since the seminal work of Zoll, Bott, Samelson, Berger, and many other authors. It is conjectured that, on certain closed manifolds, a Riemannian metric is Zoll if and only if its unit-speed periodic geodesics all have the same minimal period.

In this talk, I will first discuss the proof of this conjecture for the 2-sphere, which builds on the work of Lusternik and Schnirelmann. I will then present a stronger version of this statement valid for general Reeb flows on closed contact 3-manifolds: the closed orbits of any such Reeb flow admit a common period if and only if every orbit of the flow is closed. Time permitting, I will also summarize some related results for Reeb flows on higher dimensional contact spheres and for geodesic flows on simply connected compact rank-one symmetric spaces.

The talk is based on joint works with Suhr, Cristofaro Gardiner, and Ginzburg- Gürel.

AdresseCampus Pierre et Marie Curie