Séminaires : Séminaire Théorie des Nombres

Equipe(s) : tn,
Responsables :Ziyang Gao, Marc Hindry, Bruno Kahn, João Pedro P. dos Santos
Email des responsables : ziyang.gao@imj-prg.fr
Salle :
Adresse :
Description

http://www.imj-prg.fr/tn/STN/stnj.html

 


Orateur(s) Y. André - ,
Titre Uniformisation, monodromie et groupes triangulaires en géométrie p-adique.
Date17/06/1999
Horaire14:00 à 16:00
Diffusion
RésumeL'étude comparée des applications de périodescomplexes (à la Griffiths) et p-adiques (à la Rapoport-Zink)amène à repenser les problèmes de prolongements analytiquesp-adiques. La vision topologique des fonctions multiformes, et lavision "limite de fonctions algébriques" (équivalentes dansle cas complexe), donnent lieu à des théories trèsdifférentes. La notion d'orbifold p-adique permet toutefoisde les unifier.Les groupes fondamentaux associés possèdent en généralde nombreux quotients discrets infinis dont les représentationscorrespondent à des connexions p-adiques à monodromieglobale (phénomène analogue au cas complexe). L'exemple canoniqueest celui des équations différentielles uniformisantes d'orbifoldsp-adiques.De tels exemples existent parmi les équations hypergéométriques(à exposants non p-entiers), d'où des analogues p-adiquesdes groupes triangulaires de Schwarz. Les plus simples, liés àla liste de Takeuchi, font intervenir l'uniformisation de Cherednik-Drinfelddes courbes de Shimura.
Salle
Adresse
© IMJ-PRG