Séminaires : Séminaire Théorie des Nombres

Equipe(s) : fa, tn, tga,
Responsables :Marc Hindry, Bruno Kahn, Wieslawa Niziol, Cathy Swaenepoel
Email des responsables : cathy.swaenepoel@imj-prg.fr
Salle :
Adresse :



Orateur(s) Go Yamashita - RIMS, Kyoto University,
Titre Upper bounds for dimensions of the spaces of p-adic multiple zeta values (and multiple L-values)
Horaire14:00 à 16:00
RésumeWe show the upper bounds of p-adic multiple zeta value(resp. L-value) spaces.The bounds are related to algebraic K-theory.It is the p-adic analogue of the theorem ofGoncharov, Terasoma, Deligne-Goncharov (resp. Deligne-Goncharov). In the p-adic multiple L-value case,the bounds are not best possible in general.The gap between the true dimensions and the bounds relatedalgebraic K-theory is related to spaces of modular forms,by the similar way as complex multiple L-values. We also formulate the p-adic analogue of Grothendieck'sconjecture about an element of motivic Galois group ofthe category of mixed Tate motives.It seems related to "Cebotarev density" of the motivic Galois group.