Séminaires : Séminaire Théorie des Nombres

Equipe(s) : tn,
Responsables :Ziyang Gao, Marc Hindry, Bruno Kahn, João Pedro P. dos Santos
Email des responsables : ziyang.gao@imj-prg.fr
Salle :
Adresse :
Description

http://www.imj-prg.fr/tn/STN/stnj.html

 


Orateur(s) Davide Lombardo - Leibniz Universität Hannover,
Titre Product decomposition for $\ell$-adic Hodge groups
Date17/11/2014
Horaire14:00 à 16:00
Diffusion
RésumeLet $A$ be an abelian variety defined over a number field. The algebraic monodromy groups $H_\ell(A)$ are an $\ell$-adic analogue of the Hodge group of $A_\mathbb{C}$, and they encode a great deal of information about the Galois representations associated with $A$.A natural question is whether we can describe $H_\ell(A \times B)$ in terms of $H_\ell(A)$ and $H_\ell(B)$. While the answer is negative in general, I will describe sufficient conditions (involving the dimensions and endomorphism algebras of $A$ and $B$) to ensure that $H_\ell(A \times B)$ is isomorphic to $H_\ell(A) \times H_\ell(B)$, and show how this can be used to prove the Mumford-Tate conjecture for \textit{nonsimple} abelian varieties of dimension up to 5.
Salle
Adresse
© IMJ-PRG