Séminaires : Séminaire de Topologie

Equipe(s) : tga,
Responsables :Catherine Gille et Najib Idrissi
Email des responsables :
Salle : 1016
Adresse :Sophie Germain
Description

Un plan d’accès est disponible ici.

Pour vous inscrire à la liste de diffusion du séminaire, veuillez vous rendre à cette adresse.

Cette année (2021-2022), le séminaire de topologie évolue.

Des séances ponctuelles seront organisées tout au long de l'année et nous vous en tiendrons informé(e)s sur cette liste de diffusion.

Par ailleurs, il vous sera proposé d'assister ensemble à des projections en direct du séminaire [K-OS] (Knot Online Seminar), coorganisé par Emmanuel Wagner. Ces séances auront lieu les jeudis à 14h en salle 1016 du bâtiment Sophie Germain (Université de Paris, Campus des Grands Moulins) et ce à partir du jeudi 2 décembre.

Pour plus d'informations sur le programme vous pouvez consulter https://lrobert.perso.math.cnrs.fr/kos.html.

Les séances seront également annoncées via la liste de diffusion du séminaire.


Orateur(s) Claire Renard - ,
Titre Gradients de Heegaard sous-logarithmiques
Date23/10/2009
Horaire15:00 à 16:00
Diffusion
RésumeClaire Renard (Toulouse)Titre : Gradients de Heegaard sous-logarithmiques .Rsum: Une conjecture de Thurston encore ouverte en topologie de dimension trois affirme que toute varit hyperbolique $M$ de dimension 3, connexe, compacte et orientable possde un revtement fini qui est fibr sur le cercle. En liaison avec cette conjecture, Lackenby a introduit un nouvel invariant, appel gradient de Heegaard de la varit $M$. Il conjecture que la nullit de ce gradien quivaut l'existence d'un revtement fini de $M$ fibr sur le cercle. Nous introduisons une variante sous-logarithmique du gradient de Heegaard et dmontrons la conjecture de Lackenby pour ce gradient sous-logarithmique, en nous basant sur des travaux de Joseph Maher. Ce rsultat donne galement un critre pour qu'une famille de revtements finis de $M$ contienne un revtement dans lequel il existe une surface plonge qui est une fibre virtuelle.
Salle1016
AdresseSophie Germain
© IMJ-PRG