Séminaires : Séminaire de Topologie

Equipe(s) : tga,
Responsables :Catherine Gille et Najib Idrissi
Email des responsables :
Salle : 1016
Adresse :Sophie Germain
Description

Un plan d’accès est disponible ici.

Pour vous inscrire à la liste de diffusion du séminaire, veuillez vous rendre à cette adresse.

Vu le contexte sanitaire, le séminaire aura souvent lieu en visioconférence.

Quand le séminaire a lieu physiquement à l'université, il sera nécessaire de respecter les règles sanitaires en vigueur pour y assister : appliquer les « gestes barrières » et notamment se laver les mains régulièrement (du gel hydroalcoolique est fourni à l'entrée du bâtiment), porter un masque en permanence dans l'enceinte de l'université, garder au moins un mètre et/ou un siège d'écart entre deux personnes. La salle sera aérée de manière adéquate.


Orateur(s) Daniel Ruberman - Brandeis University,
Titre Slice Knots and the Alexander Polynomial
Date04/05/2010
Horaire11:00 à 12:00
Diffusion
RésumeDaniel Ruberman (Brandeis) : Slice Knots and the Alexander PolynomialA knot in the 3-sphere is slice if it bounds an embedded disk in the 4-ball.The disk may be topologically embedded, or we may require the strongercondition that it be smoothly embedded, the knot is said to be (respectively)topologically or smoothly slice. It has been known since the early 1980's thatthere are knots that are topologically slice, but not smoothly slice. Theseresult from Freedman's proof that knots with trivial Alexander polynomial aretopologically slice, combined with gauge-theory techniques originating withDonaldson. In joint work with C. Livingston and M. Hedden, we show that thegroup of topologically slice knots, modulo those with trivial Alexanderpolynomial, is infinitely generated. The proof uses Heegaard-Floer theory, andalso applies to problems about link concordance.
Salle1016
AdresseSophie Germain
© IMJ-PRG