Séminaires : Séminaire de Topologie

Equipe(s) : tga,
Responsables :Catherine Gille et Najib Idrissi
Email des responsables :
Salle : 1016
Adresse :Sophie Germain
Description

Un plan d’accès est disponible ici.

Pour vous inscrire à la liste de diffusion du séminaire, veuillez vous rendre à cette adresse.

Vu le contexte sanitaire, le séminaire aura souvent lieu en visioconférence.

Quand le séminaire a lieu physiquement à l'université, il sera nécessaire de respecter les règles sanitaires en vigueur pour y assister : appliquer les « gestes barrières » et notamment se laver les mains régulièrement (du gel hydroalcoolique est fourni à l'entrée du bâtiment), porter un masque en permanence dans l'enceinte de l'université, garder au moins un mètre et/ou un siège d'écart entre deux personnes. La salle sera aérée de manière adéquate.


Orateur(s) Daniel Mathews - ,
Titre Sutured Floer homology and contact-topological quantum field theory
Date11/05/2010
Horaire10:30 à 12:00
Diffusion
RésumeDaniel Mathews (Nantes)Sutured Floer homology and contact-topological quantum field theoryWe consider the topological quantum field theory properties of suturedFloer homology, as introduced by Honda--Kazez--Matic. We presentseveral results in the ``dimensionally reduced" case of productmanifolds. The SFH of such manifolds reduces to that of solid tori,and forms a ``categorification of Pascal's triangle". Contactstructures correspond to chord diagrams, and contact elements formdistinguished subsets of SFH of order given by the Catalan numbers. Wefind natural ``creation and annihilation operators'' which allow us todefine a QFT-type basis of SFH, consisting of contact elements. Infact sutured Floer homology in this case reduces to the combinatoricsof chord diagrams, and in a sense which can be made precise, is the``quantum field theory of two non-commuting particles". The details ofthis description have intrinsic contact-topological meaning, allowingus for instance to compute certain contact categories, and to give a``contact geometry free" proof that the contact element of a contactstructure with torsion is zero.
Salle1016
AdresseSophie Germain
© IMJ-PRG