Séminaires : Séminaire de Topologie

Equipe(s) : tga,
Responsables :Catherine Gille et Najib Idrissi
Email des responsables :
Salle : 1016
Adresse :Sophie Germain
Description

Un plan d’accès est disponible ici.

Pour vous inscrire à la liste de diffusion du séminaire, veuillez vous rendre à cette adresse.

Cette année (2021-2022), le séminaire de topologie évolue.

Des séances ponctuelles seront organisées tout au long de l'année et nous vous en tiendrons informé(e)s sur cette liste de diffusion.

Par ailleurs, il vous sera proposé d'assister ensemble à des projections en direct du séminaire [K-OS] (Knot Online Seminar), coorganisé par Emmanuel Wagner. Ces séances auront lieu les jeudis à 14h en salle 1016 du bâtiment Sophie Germain (Université de Paris, Campus des Grands Moulins) et ce à partir du jeudi 2 décembre.

Pour plus d'informations sur le programme vous pouvez consulter https://lrobert.perso.math.cnrs.fr/kos.html.

Les séances seront également annoncées via la liste de diffusion du séminaire.


Orateur(s) Daniel Mathews - ,
Titre Sutured Floer homology and contact-topological quantum field theory
Date11/05/2010
Horaire10:30 à 12:00
Diffusion
RésumeDaniel Mathews (Nantes)Sutured Floer homology and contact-topological quantum field theoryWe consider the topological quantum field theory properties of suturedFloer homology, as introduced by Honda--Kazez--Matic. We presentseveral results in the ``dimensionally reduced" case of productmanifolds. The SFH of such manifolds reduces to that of solid tori,and forms a ``categorification of Pascal's triangle". Contactstructures correspond to chord diagrams, and contact elements formdistinguished subsets of SFH of order given by the Catalan numbers. Wefind natural ``creation and annihilation operators'' which allow us todefine a QFT-type basis of SFH, consisting of contact elements. Infact sutured Floer homology in this case reduces to the combinatoricsof chord diagrams, and in a sense which can be made precise, is the``quantum field theory of two non-commuting particles". The details ofthis description have intrinsic contact-topological meaning, allowingus for instance to compute certain contact categories, and to give a``contact geometry free" proof that the contact element of a contactstructure with torsion is zero.
Salle1016
AdresseSophie Germain
© IMJ-PRG