Séminaires : Séminaire de Géométrie

Equipe(s) : gd,
Responsables :L. Hauswirth, R. Souam, E. Toubiana
Email des responsables :
Salle : salle 2015
Adresse :Sophie Germain
Description

Archive avant 2014

Hébergé par le projet Géométrie et Dynamique de l’IMJ-PRG

 

 


Orateur(s) Alberto FARINA - Université de Picardie, Amiens,
Titre Splitting theorems on complete Riemannian manifolds with nonnegative Ricci curvature
Date03/02/2020
Horaire13:30 à 15:00
Diffusion
Résume

 I will talk about some local and global splitting results on complete Riemannian manifolds with nonnegative Ricci curvature. The splitting is achieved through the analysis of some pointwise inequalities of Modica type which hold true for every bounded solution to a semilinear Poisson equation. More precisely, we prove that the existence of a nonconstant bounded solution for which one of the previous inequalities becomes an equality at some point of the manifold leads to the splitting results as well as to a classification of such a solution.
 

Sallesalle 2015
AdresseSophie Germain
© IMJ-PRG